
New Utility Classes and Sketches for Developers
and Sound Designers in CsoundUnity

Mateo Larrea Ferro1 and Caio M. Jiacomini2 ⋆

Berklee College of Music
mlarreaf99@gmail.com caiojmini@gmail.com

Abstract. The CsoundUnity wrapper brings the real-time synthesis and
signal processing power of Csound to applications created with Unity.
Despite the various benefits that it provides, the lack of an extended set
of examples and/or tutorials presents a challenge for those who are new
to the workflow. In the following paper, we present a series of C# utility
classes that will facilitate the creation of new models and applications
by showing what is possible. These include scripts/classes that assist
in the formatting of Channel and ScoreEvent data, getting Transform
and RigidBody data, establishing trajectories for the spatialization of
Audio Sources, processing spectrum data for audio reactivity, and pro-
cessing real-time input from a microphone or AudioClip. Essentially, this
collection aims to exhibit an accessible interface for those who are not
Unity or Csound experts - abstracting repetitive methods and providing
a layout for the further development of ‘sketches’ and fully-implemented
applications.

Keywords: CsoundUnity, C# Classes, Csound, Unity

1 Context: The Power of CsoundUnity

In late 2015, Cabbage creator Rory Walsh and a group of developers1 built a
wrapper to bridge Csound and Unity2. The connection of these two enables
a simple way of doing real-time synthesis and digital signal processing inside
the Unity engine. What would normally involve hundreds of C# lines of code
(using the Unity Scripting API) is replaced with a single CsoundUnity instance
that gives Unity access to over 1500 Csound opcodes. With the correct settings,
this tool allows building to a variety of platforms, including (and not limited
to): Android, Mac, PC, iOS, etc. Despite the significant advantage of utilizing
the wrapper to handle the audio-related aspects of a project, the number of
applications that use it is limited. Three main factors have been identified to
explain this: 1) The lack of examples/sketches makes it hard to contemplate
what the framework permits. 2) Not all Unity developers are familiar with the

⋆ Dr. Richard Boulanger, Noah Leong, and Pedro Sodre
1 5 additional contributors: Giovanni Bedetti, Bernt Isak Wærstad, Charles Berman,
Hector Centeno, and NPatch

2 Inspired by Richard Henninger’s Csound6Net .NET wrapper



2 Mateo Larrea and Caio M. Jiacomini

Csound syntax, and not all Csound developers are familiar with Unity’s C#
syntax. 3) The onboarding process is not simple enough for beginners.

2 Context: The Current State of Game Audio Workflow

As of the time of this writing, the most prevalent way of creating audio for games
is by authoring and playing back pre-rendered audio files. Sound designers and
composers typically create content in their digital audio workstations, export it
as an audio file, and import those to the game engine as an asset to be played
back at the appropriate places.3

About the Unity game engine itself, levels and scenes are created by popu-
lating them with Game Objects, which are essentially vessels that can represent
visuals (like a 3D model or a particle effect) and contain behaviors (like playing
audio or interacting with gravity). Behaviors can be assigned to Game Objects in
one of two ways: either by using Unity’s native components (like the Rigidbody4

component) or by writing custom scripts with the C# language. Both native
components and custom scripts can then be assigned to Game Objects through
the Inspector5 window.

3 Utility Classes

In this paper, the first two issues are tackled by asking: 1) How to encour-
age certain design patterns in developers? And 2) How to facilitate the power
of CsoundUnity for those who are more concerned with sound than with the
code? We have created a series of C# classes that provide a clear layout of
what is possible, abstract repetitive methods, and present an accessible interface
(through the Unity Inspector) for those who are not Unity or Csound experts.
These include the following scripts/classes: CsoundChannelRange (Scriptable
Object), CsoundChannelValue (Scriptable Object), CsoundScoreEvent (Script-
able Object), CsoundSender, CsoundTransformAndPhysicsSender, CsoundMap,
Spatializer, Real-Time Input Processing, and Audio Reactive.

4 Scriptable Object Classes For Holding Data

Scriptable object classes provide a way to create custom assets6 in Unity to hold
data. These classes were made to allow developers a degree of modularity when

3 Creating audio procedurally is still a niche and games that do it usually come up
with their own bespoke solutions.

4 ”Rigidbodies allow GameObjects to act under the control of the physics engine.” -
Unity Manual[1]

5 The Inspector window allows the user to ”view and edit properties and settings for
almost everything in the Unity Editor” - Unity Manual

6 An asset is any file that’s used in a Unity project. They can represent visual and
audio elements or more abstract concepts such as numeric data, which is what our
scriptable objects represent.



Utility Classes and Sketches for CsoundUnity 3

defining how data is communicated from Unity to Csound. We created three
classes here:

CsoundChannelValueSO : allows users to define an array of Csound channels
with fixed values that can be assigned during runtime.

CsoundChannelRangeSO : allows users to define an array of Csound chan-
nels, with a minimum and a maximum value range that can be interpolated or
randomized during runtime.

CsoundScoreEventSO : allows users to define Csound score events in a mod-
ular way, allowing the possibility to modulate each p-field independently during
runtime.

5 Main Classes

5.1 CsoundSender

This class acts as a bridge between the scriptable object classes described above
and Csound, using the CsoundUnity component to handle the communication.
It contains functions that allow developers to set instrument presets, send score
events using the CsoundScoreEventSO class, methods to toggle a Csound channel
between a value of 1 and 0 as a way to implement instrument triggers, as well as
using the CsoundChannelValueSO and CsoundChannelRangeSO to set channels
to both fixed and random values.

Relevance: This class provides an interface to define general data that can
be passed to a Csound instrument as well as methods to pass that data, mini-
mizing the amount of extra code that needs to be written to start working with
CosundUnity.

Fig. 1. Unity’s inspector view of the CsoundSender Class.



4 Mateo Larrea and Caio M. Jiacomini

5.2 CsoundTransformAndPhysicsSender

This class takes values from a GameObject’s Transform7 and Rigidbody compo-
nents, scales the data to a value range defined with a Csound Channel Range
scriptable object asset, and passes the scaled value to a Csound channel. It can
pass values based on the GameObject’s position, rotation, and scale values from
the Transform, as well as speed and angular speed from the Rigidbody compo-
nent.

Relevance: This class provides a way to translate an object’s movement in
Unity into data for Csound, streamlining how movement and interactions can
be used to shape and morph Csound instruments.

Fig. 2. Unity inspector of CsoundTransformAndPhysicsSender Class (partial view)

5.3 Spatializer

The Spatializer Class enables real-time displacement of a GameObject based on
chaotic strange attractors8, parametric equations, and circular motion. The class
allows the user to choose from a series of possible three and two-dimensional
trajectories, set the speed, and scale vectorial values at any moment of the
simulation. The result is a moving Audio Source that accounts for changes in
azimuth and zenith - meaning it relies on the Head Related Transfer Function
(HRTF) from either Unity or Csound. Additionally, the class comes with an
optional trail renderer that exhibits the path of the moving object through time.

Relevance: The Spatializer Class encourages the use of space as a composi-
tional tool. Its purpose is to facilitate the animation of 3D acoustical objects
and emulate periodic and aperiodic motions.

7 ”Every object has a Transform component. It’s used to store and manipulate the
position, rotation, and scale of the object” - Unity Manual

8 Lorenz, Four Wing, Rossler, and Chen



Utility Classes and Sketches for CsoundUnity 5

Fig. 3. View of the Unity inspector of the Spatializer Class.

5.4 Real-Time Input Processing

The Real-Time Input Processing Class enables the use of external audio input
devices to be used in Csound instruments. This opens up possibilities for real-
time digital signal processing that utilizes the vast collection of Csound opcodes.
The class also includes an option to sample incoming audio and load it into an
f-table.

Relevance: This class is particularly useful for live performance and adding
a degree of interactivity to applications.

5.5 Audio Reactive

The Audio Reactive Class allows the animation of any GameObject based on a
Fast Fourier Transform analysis. In essence, the spectrum data (of virtually any
sound) is obtained through a native Unity method called GetSpectrumData. The
benefit, however, lies in two main aspects: 1) frequency bands can be segregated
- meaning the user can make the object uniquely react to the desired frequency
distribution, and 2) it connects the spectrum data to the scale, mesh, material,
or shader of the object without the need of writing any lines of code.

Relevance: This class is particularly relevant for the animation of characters,
non-player characters, environmental elements, and the creation of interactive
and linear visualizers.

6 Examples created using these classes

Some of the current sketches we have include Trapped in the Garden, Sonic
Sketcher, Chaos Spatializers, Collision-Based Sampler, and Blowing Instrument.
All of these will become available via GitHub in the near future.

7 Future Plans and Conclusions

Utility Classes: The intention is to create four new classes in the near future. 1)
A class that takes care of communication protocols such as Open Sound Control
(OSC) or Serial. 2) A class that takes advantage of Normcore’s infrastructure9

to allow the creation of audio-based multiplayer experiences. 3) A class that

9 Multiplayer room-based service



6 Mateo Larrea and Caio M. Jiacomini

Fig. 4. Applications created using the library

connects Emotiv and Muse EEG devices to CsoundUnity. And 4) An easy-to-
use class for physical models and additive synthesis.

A set of Sketches/Examples: One of the main motivations behind creating
these utility classes consists in facilitating the development of new sketches/examples
and applications. We are focused on a) the development of fun/accessible func-
tional models that developers can take as the starting point for their own in-
ventions and b) the creation of a VR-based tool for sound design and audio
implementation inside of Virtual Reality.

Video Series for learners: Once the examples are done, the intention is to
create 10-12 video tutorials that show how to code some of the ’sketches’ from
scratch. Inspired by the work of people like Daniel Shiffman10, the tutorials will
show learners how to recreate the models but also encourage their expansion
through challenges.

10 Host of the Coding Train Youtube Channel



Utility Classes and Sketches for CsoundUnity 7

References

1. Unity manual: https://docs.unity3d.com/Manual/index.html

https://docs.unity3d.com/Manual/index.html

	 New Utility Classes and Sketches for Developers and Sound Designers in CsoundUnity 
	Context: The Power of CsoundUnity
	Context: The Current State of Game Audio Workflow 
	Utility Classes
	Scriptable Object Classes For Holding Data
	Main Classes
	CsoundSender
	CsoundTransformAndPhysicsSender
	Spatializer
	Real-Time Input Processing
	Audio Reactive

	Examples created using these classes
	Future Plans and Conclusions 


